Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells.

نویسندگان

  • J Ureña
  • R Fernández-Chacón
  • A R Benot
  • G A Alvarez de Toledo
  • J López-Barneo
چکیده

We have investigated the changes of cytosolic [Ca2+] and the secretory activity in single glomus cells dispersed from rabbit carotid bodies during exposure to solutions with variable O2 tension (Po2). In normoxic conditions (Po2 = 145 mmHg; 1 mmHg = 133 Pa), intracellular [Ca2+] was 58 +/- 29 nM, and switching to low Po2 (between 10 and 60 mmHg) led to a reversible increase of [Ca2+] up to 800 nM. The response to hypoxia completely disappeared after removal of external Ca2+ or with the addition of 0.2 mM Cd2+ to the external solution. These same solutions also abolished both the Ca2+ current of the cells and the increase of internal [Ca2+] elicited by high external K+. Elevations of cytosolic [Ca2+] in response to hypoxia or to direct membrane depolarization elicited the release of dopamine, which was detected by amperometric techniques. Dopamine secretion occurred in episodes of spike-like activity that appear to represent the release from single secretory vesicles. From the mean charge of well-resolved secretory events, we estimated the average number of dopamine molecules per vesicle to be approximately 140,000, a value about 15 times smaller than a previous estimate in chromaffin granules of adrenomedullary cells. These results directly demonstrate in a single-cell preparation the secretory response of glomus cells to hypoxia. The data indicate that the enhancement of cellular excitability upon exposure to low Po2 results in Ca2+ entry through voltage-gated channels, which leads to an increase in intracellular [Ca2+] and exocytotic transmitter release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium.

We have developed a thin-slice preparation of whole rat carotid body that allows us to perform patch-clamp recording of membrane ionic currents and to monitor catecholamine secretion by amperometry in single glomus cells under direct visual control. In normoxic conditions (P(O(2)) approximately 140 mmHg; 1 mmHg = 133 Pa), most glomus cells did not have measurable secretory activity, but exposur...

متن کامل

Oxygen sensing by ion channels and chemotransduction in single glomus cells

We have monitored cytosolic [Ca2+] and dopamine release in intact fura-2-loaded glomus cells with microfluoroimetry and a polarized carbon fiber electrode. Exposure to low PO2 produced a rise of cytosolic [Ca2+] with two distinguishable phases: an initial period (with PO2 values between 150 and approximately 70 mm Hg) during which the increase of [Ca2+] is very small and never exceeds 150-200 n...

متن کامل

Oxygen-sensing by ion channels and mitochondrial function in carotid body glomus cells.

Carotid body glomus cells release transmitters in response to hypoxia due to the increase of excitability resulting from inhibition of O2-regulated K+ channels. The mechanisms involved in the detection of changes of O2 tension are unknown. Inhibition of the mitochondrial electron transport chain (ETC) at proximal and distal complexes induces external Ca(2+)-dependent catecholamine secretion. At...

متن کامل

Oxygen chemoreception by carotid body cells in culture.

Chemoreceptors for oxygen reside within the carotid body, but it is not known which cells actually sense hypoxia and by what mechanisms they transduce this information into afferent signals in the carotid sinus nerve. We have developed systems for the growth of glomus cells of the carotid body in dissociated cell culture. Here we demonstrate that, as in vivo, these cells contain the putative ne...

متن کامل

Acid-evoked quantal catecholamine secretion from rat phaeochromocytoma cells and its interaction with hypoxia-evoked secretion.

1. Amperometric recordings using polarized carbon fibre microelectrodes were used to detect exocytosis of catecholamines from rat phaeochromocytoma (PC12) cells in response to a reduction in pHo. 2. Exocytosis was detected at pHo levels of between 7.2 and 6.8. This was probably due to intracellular acidification, since acid-evoked secretion was enhanced by the Na+-H+ exchange blocker ethylisopr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 91 21  شماره 

صفحات  -

تاریخ انتشار 1994